We use cookies to enhance your browsing experience. Ok, I understand.

About Us

Athlone Institute of Technology has been training polymer engineering graduates since the 1970s. The Materials Research Institute (MRI) of Athlone Institute of Technology is the home of polymer and materials research since 2007.

Currently, the MRI consists of two industry focused research centres namely the Centre for Industrial Services and Design (CISD) and the Applied Polymer Technologies (APT) Enterprise Ireland Technology Gateway Centre, and four research programmes divided into the MRI’s core areas of expertise.

APT Group Photo
The Materials Research Institute (MRI) of Athlone Institute of Technology

Our history

Shortly after the Athlone Institute of Technology (formerly Athlone Regional Technical College), opened its doors for students in 1970 the college recognised the need for supplying qualified technicians and graduates to a growing plastics industry and was designated as the centre of plastics education in Ireland in 1971 offering National Certificates and National Diplomas in Plastics Engineering. These courses were duly approved by the Institute of Materials (The Plastics and Rubber Institute, London the then approved international awarding body for plastics qualifications) to award the Graduate status after 4 years study and the first graduates from the college emerged in 1975. AIT took over the role as the awarding body and in 1988 when the first NCEA degrees were awarded. Many of the graduates hold senior positions in the plastics industry both in Ireland and internationally, including, USA, UK, Canada, Australia and Germany.

MRI History

Research programmes

Each programme is led by an experienced Programme Leader who is supported by a team of Principal Investigators, Post-Doctoral Researchers and Post Graduate students. The MRI Research Team has attracted funding from a wide range of funding bodies including Enterprise Ireland, Science Foundation Ireland, the European Commission and Science without Borders to name but a few as well as direct industry funding.

The research laboratories of the MRI are based in the Research Hub which was opened in 2010, the Engineering and Informatics Building (2012) and the Applied Polymer Technologies Centre (2014). This continued investment by AIT is testimony to the commitment of AIT to developing an excellent research infrastructure in the Midlands and also to the work or previous and current MRI researchers.

Our History

Research in the Polymer department started in the early 1980’s with one postgraduate researcher. Slowly this built was up in the late 80’s and early 90’s with on average 4 postgraduate researchers active at any time. Most of the work then was carried out in material modification for property improvement or cost reduction. At that time, there were very little facilities available nationally for materials research and funding was hard won as many of the companies active in the Irish plastics processing sector were not involved in structured research activities.

Over the past twenty years, AIT has grown the polymer research area into an interdisciplinary hub, interfacing with the plastics industry across multiple platforms on thousands of projects. In recent years, AIT has invested heavily in the infrastructure of the research facilities with the completion of a HEA co-funded €2 million purpose built Research Hub in 2010, while large scale processing equipment is housed in the new €36 million Engineering and Informatics Building and in a dedicated APT polymer processing facility. AIT is now home to the Applied Polymer Technology (APT) Gateway, a national technology centre focused on all aspects of polymer research funded by Enterprise Ireland.

Mission Statement

“The mission of the Material Research Institute is to support AIT’s ambition of gaining Technical University status through the development of research activities around our core disciplines of materials science and engineering. This will be underpinned by fostering collaborative interdisciplinary research activities, the provision of postgraduate training programmes and the translation of research into commercial and service outputs for the benefit of the regional and national economies”

Four Research Programmes

Biomedical Polymer Research
Biomedical polymer research at the MRI is underpinned by a strong tradition in polymer chemistry and polymer processing capabilities. Building on these foundations, a wide variety of materials and manufacturing methods are currently being developed.

Core areas include:
Bone regeneration, Peripheral nerve repair, Biodegradable stents, Wound healing devices, Lubricious hydrophilic coatings.

Learn More
Biomedical Polymers

Bone is a highly complex tissue, which undergoes microfracture and repair through everyday loading. It is this ability to repair and regenerate its structure that enables bone to spontaneously repair itself following injury without the formation of scar tissue. However, 5-10% of all fractures do not heal in the desired manner. This can lead to the need for surgical intervention where the most common treatment is a bone grafting procedure. There are an estimated 2.2 million such procedures globally each year, which makes bone the second most transplanted tissue after blood. These procedures have inherent disadvantages which gives rise to a great deal of research in this area to develop viable bone graft substitute materials.

Learn More
Biomedical Polymers

Peripheral nerve injuries may occur as a result of trauma, infection, or genetic disorders, resulting in pain, sensory loss, muscle weakness and problems with movement. It is estimated that over 700,000 surgical procedures are conducted in the US alone very year, and the annual value of the market is over $700 M. At present, there is no commercially available polymeric device that equals the performance of the autograft, which is the current gold standard. To address this unmet clinical need, the peripheral nerve repair biomaterials programme at the MRI seeks to develop novel polymeric biomaterials and manufacturing methods for the creation of the next generation of medical implants for peripheral nerve repair applications.

Learn More
Biomedical Polymers

The MRI has a strong track record in the field of coatings for catheters, development of drug eluting stents and the development of biodegradable polymer blends with tailored degradation profiles and mechanical properties. This knowledge is combined to produce solutions for use in the field of biodegradable stents, where polymers and composites with specific mechanical properties and degradation profiles are required.

Learn More
Biomedical Polymers

Biomedical Polymer Research
Biomedical polymer research at the MRI is underpinned by a strong tradition in polymer chemistry and polymer processing capabilities. Building on these foundations, a wide variety of materials and manufacturing methods are currently being developed.

Core areas include:
Bone regeneration, Peripheral nerve repair, Biodegradable stents, Wound healing devices, Lubricious hydrophilic coatings.

Learn More
Biomedical Polymers

Biomedical Polymer Research
Biomedical polymer research at the MRI is underpinned by a strong tradition in polymer chemistry and polymer processing capabilities. Building on these foundations, a wide variety of materials and manufacturing methods are currently being developed.

Core areas include:
Bone regeneration, Peripheral nerve repair, Biodegradable stents, Wound healing devices, Lubricious hydrophilic coatings.

Learn More
Biomedical Polymers

Controlled Release & Smart Polymers
The development of novel drug delivery systems is an extremely active area of the biomedical industry, and there are obvious economic and therapeutic advantages to improving the manner in which drugs are administered. Polymer drug delivery systems have been an area of core competence within AIT for over 20 years, leading to numerous publications in peer-reviewed journals, as well as important collaborations with leading higher education and industry partners.

Learn More
Controlled Release & Smart Polymers

Smart Polymers are a new generation of materials which exhibit extraordinary properties. These types of polymers can respond sharply to small changes in physical or chemical conditions with relatively large phase or property changes. Arguable the greatest potential of smart polymers lays in the area of targeted drug delivery. With clinical applications beginning to emerge it is a very exciting time for smart polymer materials research.

Learn More
Controlled Release & Smart Polymers

Controlled Release & Smart Polymers
The development of novel drug delivery systems is an extremely active area of the biomedical industry, and there are obvious economic and therapeutic advantages to improving the manner in which drugs are administered. Polymer drug delivery systems have been an area of core competence within AIT for over 20 years, leading to numerous publications in peer-reviewed journals, as well as important collaborations with leading higher education and industry partners.

Learn More
Controlled Release & Smart Polymers

Controlled Release & Smart Polymers
The development of novel drug delivery systems is an extremely active area of the biomedical industry, and there are obvious economic and therapeutic advantages to improving the manner in which drugs are administered. Polymer drug delivery systems have been an area of core competence within AIT for over 20 years, leading to numerous publications in peer-reviewed journals, as well as important collaborations with leading higher education and industry partners.

Learn More
Controlled Release & Smart Polymers

Controlled Release & Smart Polymers
The development of novel drug delivery systems is an extremely active area of the biomedical industry, and there are obvious economic and therapeutic advantages to improving the manner in which drugs are administered. Polymer drug delivery systems have been an area of core competence within AIT for over 20 years, leading to numerous publications in peer-reviewed journals, as well as important collaborations with leading higher education and industry partners.

Learn More
Controlled Release & Smart Polymers

Polymer Processing & Additive Manufacturing
The Materials Research Institute has unrivalled polymer processing capabilities in the Irish setting. It carries equipment for injection moulding, extrusion, melt spinning, compounding, vacuum forming, compression moulding and blow moulding. The Materials Research Institute is home to the Applied Polymer Technologies (APT) Technology Gateway. APT is part of the Technology Gateway Network, a nationwide resource for industry based in the IoTs delivering solutions on near to market problems for industrial partners.

Learn More
Polymer Processing & Additive Manufacturing

Polymer Processing & Additive Manufacturing
The Materials Research Institute has unrivalled polymer processing capabilities in the Irish setting. It carries equipment for injection moulding, extrusion, melt spinning, compounding, vacuum forming, compression moulding and blow moulding. The Materials Research Institute is home to the Applied Polymer Technologies (APT) Technology Gateway. APT is part of the Technology Gateway Network, a nationwide resource for industry based in the IoTs delivering solutions on near to market problems for industrial partners.

Learn More
Polymer Processing & Additive Manufacturing

Polymer Processing & Additive Manufacturing
The Materials Research Institute has unrivalled polymer processing capabilities in the Irish setting. It carries equipment for injection moulding, extrusion, melt spinning, compounding, vacuum forming, compression moulding and blow moulding. The Materials Research Institute is home to the Applied Polymer Technologies (APT) Technology Gateway. APT is part of the Technology Gateway Network, a nationwide resource for industry based in the IoTs delivering solutions on near to market problems for industrial partners.

Learn More
Polymer Processing & Additive Manufacturing

Polymer Processing & Additive Manufacturing
The Materials Research Institute has unrivalled polymer processing capabilities in the Irish setting. It carries equipment for injection moulding, extrusion, melt spinning, compounding, vacuum forming, compression moulding and blow moulding. The Materials Research Institute is home to the Applied Polymer Technologies (APT) Technology Gateway. APT is part of the Technology Gateway Network, a nationwide resource for industry based in the IoTs delivering solutions on near to market problems for industrial partners.

Learn More
Polymer Processing & Additive Manufacturing

Polymer Processing & Additive Manufacturing
The Materials Research Institute has unrivalled polymer processing capabilities in the Irish setting. It carries equipment for injection moulding, extrusion, melt spinning, compounding, vacuum forming, compression moulding and blow moulding. The Materials Research Institute is home to the Applied Polymer Technologies (APT) Technology Gateway. APT is part of the Technology Gateway Network, a nationwide resource for industry based in the IoTs delivering solutions on near to market problems for industrial partners.

Learn More
Polymer Processing & Additive Manufacturing

Polymer Processing & Additive Manufacturing
The Materials Research Institute has unrivalled polymer processing capabilities in the Irish setting. It carries equipment for injection moulding, extrusion, melt spinning, compounding, vacuum forming, compression moulding and blow moulding. The Materials Research Institute is home to the Applied Polymer Technologies (APT) Technology Gateway. APT is part of the Technology Gateway Network, a nationwide resource for industry based in the IoTs delivering solutions on near to market problems for industrial partners.

Learn More
Polymer Processing & Additive Manufacturing

Polymer Processing & Additive Manufacturing
The Materials Research Institute has unrivalled polymer processing capabilities in the Irish setting. It carries equipment for injection moulding, extrusion, melt spinning, compounding, vacuum forming, compression moulding and blow moulding. The Materials Research Institute is home to the Applied Polymer Technologies (APT) Technology Gateway. APT is part of the Technology Gateway Network, a nationwide resource for industry based in the IoTs delivering solutions on near to market problems for industrial partners.

Learn More
Polymer Processing & Additive Manufacturing

Polymer Processing & Additive Manufacturing
The Materials Research Institute has unrivalled polymer processing capabilities in the Irish setting. It carries equipment for injection moulding, extrusion, melt spinning, compounding, vacuum forming, compression moulding and blow moulding. The Materials Research Institute is home to the Applied Polymer Technologies (APT) Technology Gateway. APT is part of the Technology Gateway Network, a nationwide resource for industry based in the IoTs delivering solutions on near to market problems for industrial partners.

Learn More
Polymer Processing & Additive Manufacturing

Composites Materials & Upscaling
The MRI specializes in the development of innovative thermoplastic composite materials for use in a variety of industrial applications. Polymer composites consist of a matrix polymer material with a reinforcing or non-reinforcing filler dispersed throughout. The matrix polymer acts to provide protection to the reinforcement material from both chemical and environmental attack; bonding to the reinforcement to permit transfer of load; and to hold the reinforcement in a fixed orientation.
Our research encompasses both fibrous and particulate reinforcement, with a focus on basalt fibre, nanoclay and halloysite tubes.

Learn More
Composites Materials & Upscaling

Composites Materials & Upscaling
The MRI specializes in the development of innovative thermoplastic composite materials for use in a variety of industrial applications. Polymer composites consist of a matrix polymer material with a reinforcing or non-reinforcing filler dispersed throughout. The matrix polymer acts to provide protection to the reinforcement material from both chemical and environmental attack; bonding to the reinforcement to permit transfer of load; and to hold the reinforcement in a fixed orientation.
Our research encompasses both fibrous and particulate reinforcement, with a focus on basalt fibre, nanoclay and halloysite tubes.

Learn More
Composites Materials & Upscaling

Composites Materials & Upscaling
The MRI specializes in the development of innovative thermoplastic composite materials for use in a variety of industrial applications. Polymer composites consist of a matrix polymer material with a reinforcing or non-reinforcing filler dispersed throughout. The matrix polymer acts to provide protection to the reinforcement material from both chemical and environmental attack; bonding to the reinforcement to permit transfer of load; and to hold the reinforcement in a fixed orientation.
Our research encompasses both fibrous and particulate reinforcement, with a focus on basalt fibre, nanoclay and halloysite tubes.

Learn More
Composites Materials & Upscaling

Composites Materials & Upscaling
The MRI specializes in the development of innovative thermoplastic composite materials for use in a variety of industrial applications. Polymer composites consist of a matrix polymer material with a reinforcing or non-reinforcing filler dispersed throughout. The matrix polymer acts to provide protection to the reinforcement material from both chemical and environmental attack; bonding to the reinforcement to permit transfer of load; and to hold the reinforcement in a fixed orientation.
Our research encompasses both fibrous and particulate reinforcement, with a focus on basalt fibre, nanoclay and halloysite tubes.

Learn More
Composites Materials & Upscaling

Composites Materials & Upscaling
The MRI specializes in the development of innovative thermoplastic composite materials for use in a variety of industrial applications. Polymer composites consist of a matrix polymer material with a reinforcing or non-reinforcing filler dispersed throughout. The matrix polymer acts to provide protection to the reinforcement material from both chemical and environmental attack; bonding to the reinforcement to permit transfer of load; and to hold the reinforcement in a fixed orientation.
Our research encompasses both fibrous and particulate reinforcement, with a focus on basalt fibre, nanoclay and halloysite tubes.

Learn More
Composites Materials & Upscaling

Composites Materials & Upscaling
The MRI specializes in the development of innovative thermoplastic composite materials for use in a variety of industrial applications. Polymer composites consist of a matrix polymer material with a reinforcing or non-reinforcing filler dispersed throughout. The matrix polymer acts to provide protection to the reinforcement material from both chemical and environmental attack; bonding to the reinforcement to permit transfer of load; and to hold the reinforcement in a fixed orientation.
Our research encompasses both fibrous and particulate reinforcement, with a focus on basalt fibre, nanoclay and halloysite tubes.

Learn More
Composites Materials & Upscaling

Composites Materials & Upscaling
The MRI specializes in the development of innovative thermoplastic composite materials for use in a variety of industrial applications. Polymer composites consist of a matrix polymer material with a reinforcing or non-reinforcing filler dispersed throughout. The matrix polymer acts to provide protection to the reinforcement material from both chemical and environmental attack; bonding to the reinforcement to permit transfer of load; and to hold the reinforcement in a fixed orientation.
Our research encompasses both fibrous and particulate reinforcement, with a focus on basalt fibre, nanoclay and halloysite tubes.

Learn More
Composites Materials & Upscaling

Composites Materials & Upscaling
The MRI specializes in the development of innovative thermoplastic composite materials for use in a variety of industrial applications. Polymer composites consist of a matrix polymer material with a reinforcing or non-reinforcing filler dispersed throughout. The matrix polymer acts to provide protection to the reinforcement material from both chemical and environmental attack; bonding to the reinforcement to permit transfer of load; and to hold the reinforcement in a fixed orientation.
Our research encompasses both fibrous and particulate reinforcement, with a focus on basalt fibre, nanoclay and halloysite tubes.

Learn More
Composites Materials & Upscaling

Funding Opportunities