We use cookies to enhance your browsing experience. Ok, I understand.

Additive Manufacturing

Rapid Tooling, Design and Prototyping of Thermoplastic Components using Additive Manufacturing

The Materials Research Institute (MRI) at Athlone Institute of Technology has been working in the area of additive manufacturing for almost a decade. As Ireland’s only dedicated thermoplastic polymer processing research institute, the MRI has a variety of polymer design, prototyping, engineering and processing equipment. This equipment is utilised to provide innovations in the field of additive manufacturing in a variety of ways:

  • 3D printed mould inserts and extrusion dies: The MRI has been actively designing, manufacturing and testing 3D printed tooling for Injection Moulding and Extrusion. In this field we currently provide moulds for injection moulding machines, which can facilitate 3D printed inserts for moulding runs of up to 500 parts per insert. As these 3D printed inserts do not behave in the same manner to traditional tool steel, research is ongoing at the MRI into improving the thermal conductivity of these inserts.
  • Compounding and creating thermoplastic composite filament for FDM printers: We have tooling for the large scale production of filament and have recently acquired a laser measurement system for ensuring the produced filament is within tolerance with regards to Roundness (ovality being an issue for the FDM process) and Diameter. The MRI currently has several research projects in this area which is continually expanding.
  • The MRI under its Centre for Industrial Services and Design offers a full range of thermoplastic characterisation techniques including: Thermal analysis; Chemical analysis; Mechanical testing; Bespoke testing; ASTM standard testing.
  • The MRI also offers high precision rapid prototyping using a 3D Systems Viper which uses the SLA process. 3D System Viper’s main strengths over other 3D printers include its accuracy, surface quality and high resolution. It has been utilised to produce a range of customised prototypes which were designed in-house and have led to new product launches for our client companies. Examples include: Sedana Medical’s AnaConDa anaesthetic delivery system; Offshore Handling Systems’ hand tools for the oil and gas industry and Magiflo’s gutter system.
Additive Manufacturing

AIT, in partnership with industry and regional public bodies and in line with the Midlands Action Plan for Jobs, is progressing development of the Midlands Manufacturing Technologies Campus.  The MMTC  – with a focus on Advanced/Discrete/Additive Manufacturing technologies, Industrial/ Product Design and ‘Smart Factories’ – will provide a dynamic industry-focused R&D environment with co-location of industry and academic researchers, industry training, industry access to specialised equipment and facilities, and regional outreach.

Contacts:
Dr Sean Lyons,
Manager, APT and CISD,
Athlone IT,
Tel: 00353 90 6468284
Email: slyons@ait.ie

Equipment and capabilities:

Fused Deposition Modelling

Makerbot replicator 2x FDM printer
Orion delta FDM printer
Cubex FDM printer

Filament Production

Full production scale 3D printing filament manufacturing line (up to 20kg per hour) capable of producing filament of 1.7, 2, 3 and 4mm diameter, equipped with laser diameter measurement system and High Speed Double-position Automatic Winding.
Twin screw compounders with capacities of 50g to 25 kg per hour for the addition of additives to polymers prior to filament production.

Stereolithography (SLA)

Our primary prototyping machine is a 3D Systems Viper which uses the SLA process. The Viper has a resolution of up to 0.075mm. Its maximum build envelope is 250mm X 250mm x 250mm. 3D System Vipers main strengths over other 3d printers is its accuracy, surface quality and high resolution.

Tooling

Insert tooling for 3d printed insert moulds which can be used on AIT’s existing 60 tonne horizontal injection moulding machines, 22 tonne vertical injection moulding machine and micromoulder in addition to AITs twin extrusion blow moulding machine and pilot and plant scale thermoformers.

Design

Commercial licence for design software is PTC Creo 3.0. Main features:
3D CAD modelling (solid/surface/assembly)
Freestyle
Sheet Metal
Simulation (structural/thermal)
Mechanism Design
Assembly Performance
Rendering
Flexible modelling

Educational licences for a variety of software (available for post graduate training) for AutoCAD, Solidworks, ANSYS Workbench and Moldflow.

Biomedical Polymer Research
Biomedical polymer research at the MRI is underpinned by a strong tradition in polymer chemistry and polymer processing capabilities. Building on these foundations, a wide variety of materials and manufacturing methods are currently being developed.

Core areas include:
Bone regeneration, Peripheral nerve repair, Biodegradable stents, Wound healing devices, Lubricious hydrophilic coatings.

Learn More
Biomedical Polymers

Bone is a highly complex tissue, which undergoes microfracture and repair through everyday loading. It is this ability to repair and regenerate its structure that enables bone to spontaneously repair itself following injury without the formation of scar tissue. However, 5-10% of all fractures do not heal in the desired manner. This can lead to the need for surgical intervention where the most common treatment is a bone grafting procedure. There are an estimated 2.2 million such procedures globally each year, which makes bone the second most transplanted tissue after blood. These procedures have inherent disadvantages which gives rise to a great deal of research in this area to develop viable bone graft substitute materials.

Learn More
Biomedical Polymers

Peripheral nerve injuries may occur as a result of trauma, infection, or genetic disorders, resulting in pain, sensory loss, muscle weakness and problems with movement. It is estimated that over 700,000 surgical procedures are conducted in the US alone very year, and the annual value of the market is over $700 M. At present, there is no commercially available polymeric device that equals the performance of the autograft, which is the current gold standard. To address this unmet clinical need, the peripheral nerve repair biomaterials programme at the MRI seeks to develop novel polymeric biomaterials and manufacturing methods for the creation of the next generation of medical implants for peripheral nerve repair applications.

Learn More
Biomedical Polymers

The MRI has a strong track record in the field of coatings for catheters, development of drug eluting stents and the development of biodegradable polymer blends with tailored degradation profiles and mechanical properties. This knowledge is combined to produce solutions for use in the field of biodegradable stents, where polymers and composites with specific mechanical properties and degradation profiles are required.

Learn More
Biomedical Polymers

Biomedical Polymer Research
Biomedical polymer research at the MRI is underpinned by a strong tradition in polymer chemistry and polymer processing capabilities. Building on these foundations, a wide variety of materials and manufacturing methods are currently being developed.

Core areas include:
Bone regeneration, Peripheral nerve repair, Biodegradable stents, Wound healing devices, Lubricious hydrophilic coatings.

Learn More
Biomedical Polymers

Biomedical Polymer Research
Biomedical polymer research at the MRI is underpinned by a strong tradition in polymer chemistry and polymer processing capabilities. Building on these foundations, a wide variety of materials and manufacturing methods are currently being developed.

Core areas include:
Bone regeneration, Peripheral nerve repair, Biodegradable stents, Wound healing devices, Lubricious hydrophilic coatings.

Learn More
Biomedical Polymers

Controlled Release & Smart Polymers
The development of novel drug delivery systems is an extremely active area of the biomedical industry, and there are obvious economic and therapeutic advantages to improving the manner in which drugs are administered. Polymer drug delivery systems have been an area of core competence within AIT for over 20 years, leading to numerous publications in peer-reviewed journals, as well as important collaborations with leading higher education and industry partners.

Learn More
Controlled Release & Smart Polymers

Smart Polymers are a new generation of materials which exhibit extraordinary properties. These types of polymers can respond sharply to small changes in physical or chemical conditions with relatively large phase or property changes. Arguable the greatest potential of smart polymers lays in the area of targeted drug delivery. With clinical applications beginning to emerge it is a very exciting time for smart polymer materials research.

Learn More
Controlled Release & Smart Polymers

Controlled Release & Smart Polymers
The development of novel drug delivery systems is an extremely active area of the biomedical industry, and there are obvious economic and therapeutic advantages to improving the manner in which drugs are administered. Polymer drug delivery systems have been an area of core competence within AIT for over 20 years, leading to numerous publications in peer-reviewed journals, as well as important collaborations with leading higher education and industry partners.

Learn More
Controlled Release & Smart Polymers

Controlled Release & Smart Polymers
The development of novel drug delivery systems is an extremely active area of the biomedical industry, and there are obvious economic and therapeutic advantages to improving the manner in which drugs are administered. Polymer drug delivery systems have been an area of core competence within AIT for over 20 years, leading to numerous publications in peer-reviewed journals, as well as important collaborations with leading higher education and industry partners.

Learn More
Controlled Release & Smart Polymers

Controlled Release & Smart Polymers
The development of novel drug delivery systems is an extremely active area of the biomedical industry, and there are obvious economic and therapeutic advantages to improving the manner in which drugs are administered. Polymer drug delivery systems have been an area of core competence within AIT for over 20 years, leading to numerous publications in peer-reviewed journals, as well as important collaborations with leading higher education and industry partners.

Learn More
Controlled Release & Smart Polymers

Polymer Processing & Additive Manufacturing
The Materials Research Institute has unrivalled polymer processing capabilities in the Irish setting. It carries equipment for injection moulding, extrusion, melt spinning, compounding, vacuum forming, compression moulding and blow moulding. The Materials Research Institute is home to the Applied Polymer Technologies (APT) Technology Gateway. APT is part of the Technology Gateway Network, a nationwide resource for industry based in the IoTs delivering solutions on near to market problems for industrial partners.

Learn More
Polymer Processing & Additive Manufacturing

Polymer Processing & Additive Manufacturing
The Materials Research Institute has unrivalled polymer processing capabilities in the Irish setting. It carries equipment for injection moulding, extrusion, melt spinning, compounding, vacuum forming, compression moulding and blow moulding. The Materials Research Institute is home to the Applied Polymer Technologies (APT) Technology Gateway. APT is part of the Technology Gateway Network, a nationwide resource for industry based in the IoTs delivering solutions on near to market problems for industrial partners.

Learn More
Polymer Processing & Additive Manufacturing

Polymer Processing & Additive Manufacturing
The Materials Research Institute has unrivalled polymer processing capabilities in the Irish setting. It carries equipment for injection moulding, extrusion, melt spinning, compounding, vacuum forming, compression moulding and blow moulding. The Materials Research Institute is home to the Applied Polymer Technologies (APT) Technology Gateway. APT is part of the Technology Gateway Network, a nationwide resource for industry based in the IoTs delivering solutions on near to market problems for industrial partners.

Learn More
Polymer Processing & Additive Manufacturing

Polymer Processing & Additive Manufacturing
The Materials Research Institute has unrivalled polymer processing capabilities in the Irish setting. It carries equipment for injection moulding, extrusion, melt spinning, compounding, vacuum forming, compression moulding and blow moulding. The Materials Research Institute is home to the Applied Polymer Technologies (APT) Technology Gateway. APT is part of the Technology Gateway Network, a nationwide resource for industry based in the IoTs delivering solutions on near to market problems for industrial partners.

Learn More
Polymer Processing & Additive Manufacturing

Polymer Processing & Additive Manufacturing
The Materials Research Institute has unrivalled polymer processing capabilities in the Irish setting. It carries equipment for injection moulding, extrusion, melt spinning, compounding, vacuum forming, compression moulding and blow moulding. The Materials Research Institute is home to the Applied Polymer Technologies (APT) Technology Gateway. APT is part of the Technology Gateway Network, a nationwide resource for industry based in the IoTs delivering solutions on near to market problems for industrial partners.

Learn More
Polymer Processing & Additive Manufacturing

Polymer Processing & Additive Manufacturing
The Materials Research Institute has unrivalled polymer processing capabilities in the Irish setting. It carries equipment for injection moulding, extrusion, melt spinning, compounding, vacuum forming, compression moulding and blow moulding. The Materials Research Institute is home to the Applied Polymer Technologies (APT) Technology Gateway. APT is part of the Technology Gateway Network, a nationwide resource for industry based in the IoTs delivering solutions on near to market problems for industrial partners.

Learn More
Polymer Processing & Additive Manufacturing

Polymer Processing & Additive Manufacturing
The Materials Research Institute has unrivalled polymer processing capabilities in the Irish setting. It carries equipment for injection moulding, extrusion, melt spinning, compounding, vacuum forming, compression moulding and blow moulding. The Materials Research Institute is home to the Applied Polymer Technologies (APT) Technology Gateway. APT is part of the Technology Gateway Network, a nationwide resource for industry based in the IoTs delivering solutions on near to market problems for industrial partners.

Learn More
Polymer Processing & Additive Manufacturing

Polymer Processing & Additive Manufacturing
The Materials Research Institute has unrivalled polymer processing capabilities in the Irish setting. It carries equipment for injection moulding, extrusion, melt spinning, compounding, vacuum forming, compression moulding and blow moulding. The Materials Research Institute is home to the Applied Polymer Technologies (APT) Technology Gateway. APT is part of the Technology Gateway Network, a nationwide resource for industry based in the IoTs delivering solutions on near to market problems for industrial partners.

Learn More
Polymer Processing & Additive Manufacturing

Composites Materials & Upscaling
The MRI specializes in the development of innovative thermoplastic composite materials for use in a variety of industrial applications. Polymer composites consist of a matrix polymer material with a reinforcing or non-reinforcing filler dispersed throughout. The matrix polymer acts to provide protection to the reinforcement material from both chemical and environmental attack; bonding to the reinforcement to permit transfer of load; and to hold the reinforcement in a fixed orientation.
Our research encompasses both fibrous and particulate reinforcement, with a focus on basalt fibre, nanoclay and halloysite tubes.

Learn More
Composites Materials & Upscaling

Composites Materials & Upscaling
The MRI specializes in the development of innovative thermoplastic composite materials for use in a variety of industrial applications. Polymer composites consist of a matrix polymer material with a reinforcing or non-reinforcing filler dispersed throughout. The matrix polymer acts to provide protection to the reinforcement material from both chemical and environmental attack; bonding to the reinforcement to permit transfer of load; and to hold the reinforcement in a fixed orientation.
Our research encompasses both fibrous and particulate reinforcement, with a focus on basalt fibre, nanoclay and halloysite tubes.

Learn More
Composites Materials & Upscaling

Composites Materials & Upscaling
The MRI specializes in the development of innovative thermoplastic composite materials for use in a variety of industrial applications. Polymer composites consist of a matrix polymer material with a reinforcing or non-reinforcing filler dispersed throughout. The matrix polymer acts to provide protection to the reinforcement material from both chemical and environmental attack; bonding to the reinforcement to permit transfer of load; and to hold the reinforcement in a fixed orientation.
Our research encompasses both fibrous and particulate reinforcement, with a focus on basalt fibre, nanoclay and halloysite tubes.

Learn More
Composites Materials & Upscaling

Composites Materials & Upscaling
The MRI specializes in the development of innovative thermoplastic composite materials for use in a variety of industrial applications. Polymer composites consist of a matrix polymer material with a reinforcing or non-reinforcing filler dispersed throughout. The matrix polymer acts to provide protection to the reinforcement material from both chemical and environmental attack; bonding to the reinforcement to permit transfer of load; and to hold the reinforcement in a fixed orientation.
Our research encompasses both fibrous and particulate reinforcement, with a focus on basalt fibre, nanoclay and halloysite tubes.

Learn More
Composites Materials & Upscaling

Composites Materials & Upscaling
The MRI specializes in the development of innovative thermoplastic composite materials for use in a variety of industrial applications. Polymer composites consist of a matrix polymer material with a reinforcing or non-reinforcing filler dispersed throughout. The matrix polymer acts to provide protection to the reinforcement material from both chemical and environmental attack; bonding to the reinforcement to permit transfer of load; and to hold the reinforcement in a fixed orientation.
Our research encompasses both fibrous and particulate reinforcement, with a focus on basalt fibre, nanoclay and halloysite tubes.

Learn More
Composites Materials & Upscaling

Composites Materials & Upscaling
The MRI specializes in the development of innovative thermoplastic composite materials for use in a variety of industrial applications. Polymer composites consist of a matrix polymer material with a reinforcing or non-reinforcing filler dispersed throughout. The matrix polymer acts to provide protection to the reinforcement material from both chemical and environmental attack; bonding to the reinforcement to permit transfer of load; and to hold the reinforcement in a fixed orientation.
Our research encompasses both fibrous and particulate reinforcement, with a focus on basalt fibre, nanoclay and halloysite tubes.

Learn More
Composites Materials & Upscaling

Composites Materials & Upscaling
The MRI specializes in the development of innovative thermoplastic composite materials for use in a variety of industrial applications. Polymer composites consist of a matrix polymer material with a reinforcing or non-reinforcing filler dispersed throughout. The matrix polymer acts to provide protection to the reinforcement material from both chemical and environmental attack; bonding to the reinforcement to permit transfer of load; and to hold the reinforcement in a fixed orientation.
Our research encompasses both fibrous and particulate reinforcement, with a focus on basalt fibre, nanoclay and halloysite tubes.

Learn More
Composites Materials & Upscaling

Composites Materials & Upscaling
The MRI specializes in the development of innovative thermoplastic composite materials for use in a variety of industrial applications. Polymer composites consist of a matrix polymer material with a reinforcing or non-reinforcing filler dispersed throughout. The matrix polymer acts to provide protection to the reinforcement material from both chemical and environmental attack; bonding to the reinforcement to permit transfer of load; and to hold the reinforcement in a fixed orientation.
Our research encompasses both fibrous and particulate reinforcement, with a focus on basalt fibre, nanoclay and halloysite tubes.

Learn More
Composites Materials & Upscaling

Funding Opportunities